I. Blocking vs. Nonblocking Assignments

- Verilog supports two types of assignments within always

blocks, with subtly different behaviors.
- Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
x = a | b;
y =a " b " c;
z = b & ~c;
end

1. Evaluate a | b, assign result to x
2. Evaluate a*b”c, assign resultto y
3. Evaluate b&(~c), assign result to z

- Nonblocking assignment: all assignments deferred until all

right-hand sides have been evaluated (end of simulation

timestep)

always @ (a or b or c)

begin
X <= a |
y <= a ~ b " c;
z <= Db

end

1. Evaluate a | b but defer assignment of x
2. Evaluate a*b”*c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z
4. Assign x, y, and z with their new values

- Sometimes, as above, both produce the same result.

Sometimes, not!

6.111 Fall 2007

Lecture 6, Slide 1

Why two ways of assigning values?

Conceptual need for two kinds of assignment (in always blocks):

Blocking: . % a &b
Evaluation and assignment

are immediate Y — X | ¢
Non-Blocking: | al<=b (= a = b
Assignment is postponed until

all r.h.s. evaluations are done |b|<=|a y <=|X , C
When to use: Sequential Combinational

Circuits Circuits

6.111 Fall 2007 Lecture 6, Slide 2

Assignment Styles for Sequential Logic

e ey Doy’ n—o o[™o |21 al-ou
. S S L
Line clk |_ |_

- Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out); module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg ql, g2, out; reg ql, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
ql <= in; gl = in;
q2 <= ql; q2 = ql;
out <= g2; out = g2;
end end

endmodule endmodule

6.111 Fall 2007 Lecture 6, Slide 3

Use Nonblocking for Sequential Logic

always @ (posedge clk) always @ (posedge clk)
begin Hegin
gl <= in; ¥l = in;
g2 <= ql; gz = ql;
out <= g2; out = g2;
end end
“At each rising clock edge, q17, g2, and “At each rising 'uck edge, q7 = in.
out simultaneously receive the old values After that, g2 = g/ = in; After that,
of in, q1, and q2.” out=q2=r1=in; Firally out =in.”
q1 q2 _ ql q2
in—D Q D QF~—D Q}— out in - D Qf———e— out

clk |_> |_> |_> 21k _|_>

- Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

+ Guideline: use nonblocking assignments for
sequential always blocks

6.111 Fall 2007

Lecture 6, Slide 4

Use Blocking for Combinational Logic

Blocking Behavi
ocking Behavior abc xy always @ (a or b or c)
(Given) Initial Condition [110 11 begin
h ; - Ml 03000 ciieieessssssmsessassam
wasyg?o?ocktriggered 010 11 X B a & b’. a ——| :
x = a & b; 010 01 y =x 1| ¢ b = T X
end : :
Yy =x | ¢ 010 00 c = 2
Nuirklocking Behavior | abc xy | Deferred
ge;;z:) Initial Conaiiizn 110 11 alwars @ (a or b or c)
I ock tri 010 11 :
always block triggered begin
x <= a & b; 010 11! a<=0 X <= a & b;
y <= x| c; 010 11 | x<=0, y<=1 §<“x|°f
Assior.cnt completion 010 01 en

Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

+ Guideline: use blocking assignments for
combinational always blocks

6.111 Fall 2007

Lecture 6, Slide 5

IT. Single-clock Synchronous Circuits

We'll use Flip Flops and Registers — groups of FFs sharing a clock input - ina
highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

m) combinational cycles \ l

*Single clock signal shared among
all clocked devices C\

*Only care about value of
combinational circuits just
before rising edge of clock (\v

*Period greater than every C\
combinational delay %

*Change saved state after noise-
inducing logic transitions have

\itopped! /

6.111 Fall 2007 Lecture 6, Slide 6

Clocked circuit for on/off button

module onoff (clk,button,light);

input clk,button;
Does this work

outpui_: light; with a 1Mhz
reg light; CLK?
always @ (posedge clk) \\ 2
begin R &

if (button) light <= ~light;
end

endmodule
—0
D@ D »1 0
BUTTON LE 4 —»D Q > LIGHT
CLK CLK >
/M

SINGLE GLOBAL CLOCK

6.111 Fall 2007 Lecture 6, Slide 7

Asynchronous Inputs in Sequential Systems

What about external signals?

T , Can't guarantee
; Sequential System sef'up and ho/d
A times will be met!
Clock

When an asynchronous signal causes a setup/hold

violation. ..
| I

Q / / —<Z
D__,

Clock [\, \ N O\ /L
Transition is missed on Transition is caught on Output is metastable
first clock cycle, but first clock cycle. for an mdetgrmlnate
caught on next clock amount of time.
cycle.

Q: Which cases are problematic?

6.111 Fall 2007 Lecture 6, Slide 8

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

. Clocked
% Synchronous

Sequential System

s

foc ‘DQ

Clock

This prevents the possibility of I and IT occurring in different places
in the circuit, but what about metastability?

6.111 Fall 2007 Lecture 6, Slide 9

Handling Metastability

Preventing metastability turns out to be an impossible problem

High gain of digital devices makes it likely that metastable
conditions will resolve themselves quickly

Solution to metastability: allow time for signals to stabilize

Can be Very unlikely to be Extremely unlikely to
metastable metastable for >1 be metastable for >2
right after clock cycle clock cycle

sampling \ \ /

T \ % / Complicated
fo o D Qb oHp k=" Sequential Logic
L X System

AN
Clock

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, ...)
In 6.111, a pair of synchronization registers is sufficient

6.111 Fall 2007 Lecture 6, Slide 10

ITI. Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized “states” of operation

At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

y 4
inputs —) Combinational mmm) ouUtputs
+ Logic +
present next
state state
n n
y 4
Q Flip- D
Flops

CLK —

6.111 Fall 2007 Lecture 6, Slide 11

Example 1: Light Switch

- State transition diagram

BUTTON-=1
BUTTON=0 BUTTON-=0
BUTTON-=1

* Logic diagram

~DQ—>1 []
BUTTON 4 —D Q » LIGHT

CLK >

6.111 Fall 2007 Lecture 6, Slide 12

Example 2: 4-bit Counter

* Logic diagram

4 4
@ // > // » count

* Verilog clk

4-bit counter

module counter (clk, count);
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+l;
end
endmodule

6.111 Fall 2007 Lecture 6, Slide 13

Example 2: 4-bit Counter

* Logic diagram

4 4
@1 7L. / » count

» 0 ?
* Verilog enb clk

4-bit counter with enable
module counter (clk,enb,count);
input clk,enb;

output [3:0] count; Could I use the following instead?
reg [3:0] count; if (enb) count <= count+l;
always @ (posedge clk) begin ’.

count <= enb ? count+l : count;
end

endmodule

6.111 Fall 2007 Lecture 6, Slide 14

Example 2: 4-bit Counter

* Logic diagram

0—1N4 4
@1 7L. / » count
0

—>
* Verilog enb clr clk
4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count); Isn't this a lot like
input elk,enb,clr; Exercise 1 in Lab 2?
output [3:0] count; \.‘

reg [3:0] count;

always @ (posedge clk) begin
count <= clr ? 4’'b0 : (enb ? count+l : count);
end
endmodule

6.111 Fall 2007 Lecture 6, Slide 15

Two Types of FSMs

Moore and Mealy FSMs : different output generation

« Moore FSM:

next

state
St

inputs outputs
Xo...Xn n yk = fk(s)
CLK
present state S
* Mealy FSM:
direct combinational path! outputs
| Vi = (S, Xp-%,)
inputs
Xg---X,,

6.111 Fall 2007 Lecture 6, Slide 16

Design Example: Level-to-Pulse

A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

- It's a synchronous rising-edge detector.

- Sample uses:

- Buttons and switches pressed by humans for
arbitrary periods of time

- Single-cycle enable signals for counters

Level to
—|L Pulse P |—
- Converter tout P orod
_ ...outpu proauces a
Whenever input L goes |_ single pulse, one clock

from low to high... CLK period wide.

6.111 Fall 2007 Lecture 6, Slide 17

Step 1: State Transition Diagram

Block diagram of desired system:

Synchronizer

Edge Detector

: Level to
unsynchronized
user input D Q D L Pulse
FSM
>
CLK

P|l—

- State transition diagram is a useful FSM representation and

design aid:

“if L=1 at the clock edge,
then jump to state 01.”

— L

00
Low input,
Waiting for rise

P=0

“if L=0 at the clock edge,
then stay in state 00.”

=1

01

P=1

Edge Detected!

L

1

Binary values of states

11
High input,
Waiting for fall
P=0

y i

L=1

6.111 Fall 2007

/ This is the output that results from

this state. (Moore or Mealy?)

Lecture 6, Slide 18

Transition diagram is readily converted to a
state transition table (just a truth table)

Step 2: Logic Derivation

L=1

L=1

High input,
Waiting for fall

11

Curren
t State

In

—

- = O O O O

_ e =00

1

o = O = 0O

1

- Combinational logic may be derived using Karnaugh maps

3130 for S1+.'

L
0

1

00 01 11 10

0

0

0

X

0

1

1

X

+.
S,S, for S,*:

L
0

1

6.111 Fall 2007

00 01 11 10

0

0

0

X

1

1

1

X

- y Yy
P
Comb. =)
Flops Logic
CLK=>
n
S P=8§,S,

Next
State Out
0 O 0
o 1 0
0O O 1
1 1 1
0 O 0
1 1 0
for P
0 1
0: X
10

Lecture 6, Slide 19

Moore Level-to-Pulse Converter

next
state
inputs S
P === Comb. _'n_> D Flip- Q Comb.) outputs
CLK=>
present state S
S,*=LS, _ e
S,=L P=38,S,

SO+ SO
D
L Q _)7 =
CLK—> O
) D
I__/ S,* _| s,
-

6.111 Fall 2007 Lecture 6, Slide 20

Design of a Mealy Level-to-Pulse

direct combinational path!

S Comb.
Logic . .o Flops n
S

- Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes). L _.{ @
/ N p_ Y)
L=1[P=1 Clock [__
L=0 | P=0 State

Output transitions immediately.
State transitions at the clock edge.
L=1| P=0

2. While in state S=1 and as long as L /
remains at 1, this output is asserted.

6.111 Fall 2007 Lecture 6, Slide 21

Mealy Level-to-Pulse Converter

Pres. Next
State State Out

© O = O

0 0
1 1
0 0
1 1

Mealy FSM circuit implementation of level-to-pulse converter:

D

S* S

ol O

D
CLK—D>

s
FSM's state simply remembers the previous value of L

Circuit benefits from the Mealy FSM's implicit single-
cycle assertion of outputs during state transitions

6.111 Fall 2007 Lecture 6, Slide 22

How are they different?
- Moore: outputs = f(state) only

- Mealy outputs = f(state and input)
- Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P

Moore/Mealy Trade-Offs

Mealy: immediate assertion of P

L__J
p
Clock [\
State[0]

L .

P -_i/i_*
ciosk T
State g_

Compared to a Moore FSM, a Mealy FSM might...
- Be more difficult to conceptualize and design

- Have fewer states

6.111 Fall 2007

Lecture 6, Slide 23

Light Switch Revisited

BUTTON ——

ol O

CLK

L.
o

|

.

~

Level-to-Pulse

FSM

6.111 Fall 2007

S

Light Switch

» LIGHT

Lecture 6, Slide 24

