
6.111 Fall 2007 Lecture 6, Slide 1

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

1. Evaluate a | b, assign result to x
2. Evaluate a^b^c, assign result to y
3. Evaluate b&(~c), assign result to z

I. Blocking vs. Nonblocking Assignments
• Verilog supports two types of assignments within always

blocks, with subtly different behaviors.
• Blocking assignment: evaluation and assignment are immediate

• Nonblocking assignment: all assignments deferred until all
right-hand sides have been evaluated (end of simulation
timestep)

• Sometimes, as above, both produce the same result.
Sometimes, not!

always @ (a or b or c)
begin
 x = a | b;
 y = a ^ b ^ c;
 z = b & ~c;
end

always @ (a or b or c)
begin
 x <= a | b;
 y <= a ^ b ^ c;
 z <= b & ~c;
end 4. Assign x, y, and z with their new values

6.111 Fall 2007 Lecture 6, Slide 2

Why two ways of assigning values?

Conceptual need for two kinds of assignment (in always blocks):

a
b

c

x

y

a

b

a = b
b = a

x = a & b
y = x | c

Blocking:
Evaluation and assignment
are immediate

a <= b
b <= a

x <= a & b
y <= x | c

Non-Blocking:
Assignment is postponed until
all r.h.s. evaluations are done

When to use: Sequential
Circuits

Combinational
Circuits(only in always blocks!)

6.111 Fall 2007 Lecture 6, Slide 3

Assignment Styles for Sequential Logic

• Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);
 input in, clk;
 output out;
 reg q1, q2, out;
 always @ (posedge clk)
 begin
 q1 <= in;
 q2 <= q1;
 out <= q2;
 end
endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based
Digital Delay

Line

module blocking(in, clk, out);
 input in, clk;
 output out;
 reg q1, q2, out;
 always @ (posedge clk)
 begin
 q1 = in;
 q2 = q1;
 out = q2;
 end
endmodule

6.111 Fall 2007 Lecture 6, Slide 4

Use Nonblocking for Sequential Logic

D Q D Q D Qin out
q1 q2

clk

 always @ (posedge clk)
 begin
 q1 <= in;
 q2 <= q1;
 out <= q2;
 end

“At each rising clock edge, q1, q2, and
out simultaneously receive the old values

of in, q1, and q2.”

 always @ (posedge clk)
 begin
 q1 = in;
 q2 = q1;
 out = q2;
 end

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in; After that,

out = q2 = q1 = in; Finally out = in.”

• Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

• Guideline: use nonblocking assignments for
sequential always blocks

D Qin out

clk

q1 q2

6.111 Fall 2007 Lecture 6, Slide 5

x <= a & b; 0 1 0 1 1 x<=0

Assignment completion 0 1 0 0 1

Use Blocking for Combinational Logic

• Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it’s not elegant

• Guideline: use blocking assignments for
combinational always blocks

(Given) Initial Condition

Blocking Behavior a b c x y

1 1 0 1 1

(Given) Initial Condition

a b c x y Deferred

1 1 0 1 1

Nonblocking Behavior

 always @ (a or b or c)
 begin
 x <= a & b;
 y <= x | c;
 end

 always @ (a or b or c)
 begin
 x = a & b;
 y = x | c;
 end

a
b

c

x

y

a changes;
always block triggered 0 1 0 1 1
x = a & b; 0 1 0 0 1
y = x | c; 0 1 0 0 0

a changes;
always block triggered 0 1 0 1 1

y <= x | c; 0 1 0 1 1 x<=0, y<=1

6.111 Fall 2007 Lecture 6, Slide 6

II. Single-clock Synchronous Circuits

Single-clock Synchronous Discipline:

• No combinational cycles

• Only care about value of
combinational circuits just
before rising edge of clock

• Period greater than every
 combinational delay
• Change saved state after noise-

inducing logic transitions have
stopped!

We’ll use Flip Flops and Registers – groups of FFs sharing a clock input – in a
highly constrained way to build digital systems.

• Single clock signal shared among
all clocked devices

6.111 Fall 2007 Lecture 6, Slide 7

Clocked circuit for on/off button
module onoff(clk,button,light);
 input clk,button;
 output light;
 reg light;
 always @ (posedge clk)
 begin
 if (button) light <= ~light;
 end
endmodule

D QBUTTON LIGHT

CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work
with a 1Mhz
CLK?

6.111 Fall 2007 Lecture 6, Slide 8

Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Clock

Q

D

I

Transition is missed on
first clock cycle, but
caught on next clock
cycle.

II

Transition is caught on
first clock cycle.

?

III

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

6.111 Fall 2007 Lecture 6, Slide 9

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places
in the circuit, but what about metastability?

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

6.111 Fall 2007 Lecture 6, Slide 10

Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable

conditions will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In 6.111, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Can be
metastable
right after
sampling

Very unlikely to be
metastable for >1
clock cycle

Extremely unlikely to
be metastable for >2
clock cycle

6.111 Fall 2007 Lecture 6, Slide 11

III. Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

6.111 Fall 2007 Lecture 6, Slide 12

Example 1: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

D QBUTTON LIGHT

CLK

0

1

Combinational logic

Register

• Logic diagram

6.111 Fall 2007 Lecture 6, Slide 13

Example 2: 4-bit Counter

+1

clk

count
44

• Logic diagram

4-bit counter
module counter(clk, count);
 input clk;
 output [3:0] count;
 reg [3:0] count;

 always @ (posedge clk) begin
 count <= count+1;
 end
endmodule

• Verilog

6.111 Fall 2007 Lecture 6, Slide 14

Example 2: 4-bit Counter

1

0

+1

enb clk

count
44

• Logic diagram

4-bit counter with enable
module counter(clk,enb,count);
 input clk,enb;
 output [3:0] count;
 reg [3:0] count;

 always @ (posedge clk) begin
 count <= enb ? count+1 : count;
 end
endmodule

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

6.111 Fall 2007 Lecture 6, Slide 15

Example 2: 4-bit Counter

0 1

0
1

0

+1

enb clr clk

count
44

Isn’t this a lot like
Exercise 1 in Lab 2?

• Logic diagram

4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);
 input clk,enb,clr;
 output [3:0] count;
 reg [3:0] count;

 always @ (posedge clk) begin
 count <= clr ? 4’b0 : (enb ? count+1 : count);
 end
endmodule

• Verilog

6.111 Fall 2007 Lecture 6, Slide 16

Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

• Moore FSM:

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

• Mealy FSM:

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

6.111 Fall 2007 Lecture 6, Slide 17

Design Example: Level-to-Pulse

• A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

• It’s a synchronous rising-edge detector.
• Sample uses:

– Buttons and switches pressed by humans for
arbitrary periods of time

– Single-cycle enable signals for counters

Level to
Pulse

Converter
L P

CLK

Whenever input L goes
from low to high...

...output P produces a
single pulse, one clock

period wide.

6.111 Fall 2007 Lecture 6, Slide 18

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input,
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• State transition diagram is a useful FSM representation and
 design aid:

Step 1: State Transition Diagram
• Block diagram of desired system:

D Q
Level to
Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

This is the output that results from
this state. (Moore or Mealy?)

P = 0

11

Binary values of states

L=0

“if L=0 at the clock edge,
then stay in state 00.”

L=1“if L=1 at the clock edge,
then jump to state 01.”

D Q

CLK

6.111 Fall 2007 Lecture 6, Slide 19

Step 2: Logic Derivation

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

1
0
1
0
1
0
L

In

0
0
1
1
0
0
P

Out

1
0
1
0
1
0

S0
+

1
0
1
0
0
0

S1
+

1
1
0
0
0
0
S1

Next
State

Curren
t State

1
1
1
1

0
0
S0

• Combinational logic may be derived using Karnaugh maps

X1101
X0000
10110100

X1111
X0000
10110100

S1S0
L

S1S0
L

for S1
+:

for S0
+:

011
X00
10

S1
for P:

S0

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

S

n

S+L P

S1
+ = LS0

S0
+ = L

P = S1S0

Transition diagram is readily converted to a
state transition table (just a truth table)

6.111 Fall 2007 Lecture 6, Slide 20

Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1
+ = LS0

S0
+ = L P = S1S0

D Q

S0

S1

CLK

S0
+

S1
+

L P
Q

Q

6.111 Fall 2007 Lecture 6, Slide 21

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes).

2. While in state S=1 and as long as L
remains at 1, this output is asserted.

L=1 | P=0

L=1 | P=1

P=0

0
Input is low

1
Input is high

L=0 | P=0

L=0 | P=0

Design of a Mealy Level-to-Pulse

• Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

direct combinational path!

P

L

State

Clock

Output transitions immediately.
State transitions at the clock edge.

1
2

6.111 Fall 2007 Lecture 6, Slide 22

Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse converter:

1
0
1
0
L

In

0
0
1
0
P

Out

1
0
1
0
S+

Next
State

Pres.
State

1
1

0
0
S

D Q
S

CLK

S+

L

P

Q
S

• FSM’s state simply remembers the previous value of L
• Circuit benefits from the Mealy FSM’s implicit single-

cycle assertion of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0

6.111 Fall 2007 Lecture 6, Slide 23

Moore/Mealy Trade-Offs

• How are they different?
– Moore: outputs = f(state) only
– Mealy outputs = f(state and input)
– Mealy outputs generally occur one cycle earlier than a Moore:

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design
– Have fewer states

P

L

State

Clock

Mealy: immediate assertion of P

P

L

State[0]

Clock

Moore: delayed assertion of P

6.111 Fall 2007 Lecture 6, Slide 24

Light Switch Revisited

D Q

BUTTON

LIGHT

CLK

0

1

D Q

Q

Level-to-Pulse
FSM

Light Switch
FSM

